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These difficult questions are all optional. I shall mark answers or attempts
by my students, but I shan’t spend very long talking about them in supervi-
sions because they are somewhat tangential to the course. Sometimes I shall
set one of them as an alternative to one of the week’s standard questions:
in that case it is usually better to choose the question from the lecturer’s
sheet unless you really feel like an extra challenge. Questions marked with
an asterisk are likelier to be (even) harder than those without. Many of
the questions are well-known puzzles or standard pieces of mathematics. A
couple are inspired by Tripos. A few are perhaps original.

X. Assorted extension questions

X1. Take two identical cubes of side length a. Dissect the first into six
congruent square-based pyramids, such that the base of each pyramid is
obtained from a face of the cube, and the opposite vertex of each pyramid
comes from the centre of the cube. Attach one of these pyramids, by
the base, to each of the faces of the second cube.

a) Show that the resultant solid has twelve faces, each a rhombus. It
is called the rhombic dodecahedron.

b) Find the angles within the faces.

c) Find the angle between adjacent faces of the rhombic dodecahe-
dron.

d) Show (using the result of the last part or using the original con-
struction) that rhombic dodecahedra can tessellate to fill space.

e) If you study materials science, relate this tessellation to the cubic
close-packed structure, and to the structure of diamond.
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X2. Throughout this question the vectors a, b, c, and r are vectors in three
dimensions; their components are real numbers. Condition E is the
condition that

a× (b× r) = (a× b)× r

where a and b are fixed and we consider different values of r.

a) Let a = (−101, 112, 123) and b = (−154, 145, 126). Describe fully
the locus of values of r that satisfy condition E.

b) Let a = (−3, 4, 2) and b = (4, 5,−4). Describe fully the locus of
values of r that satisfy condition E.

c) Show that there can be no values of a, b, and c that satisfy the
equations

a× (b× c) = −(a× b)× c 6= 0 .

X3. (*) In crystallography, a triclinic unit cell is a parallelepiped forming the
building block for certain kinds of crystal structures. We could describe
it using the vectors a, b, and c, forming three of the edges starting from
an origin at one corner. Crystallographers tend to use the lengths of the
edges, a = |a|, b = |b|, and c = |c|, along with the angles α, β, and γ,
where α is the angle between b and c, β is the angle between c and a,
and γ is the angle between a and b. Show that the volume of the unit
cell is given by

V = abc
√

1− cos2 α− cos2 β − cos2 γ + 2 cosα cos β cos γ .

X4. Take a general quadrilateral ABCD, and construct squares on each side
of it. Represent the points A, B, C, and D with the complex numbers
a, b, c, and d. Represent the centres of the squares on AB, BC, CD,
and DA with the complex numbers p, q, r, and s respectively.

a) Show that

p = a+
1

2
(b− a)(1 + i) ,

where p is at the centre of the square on side AB.

b) Find similar expressions for q, r, and s.

c) Find
p− r

q − s
.

d) Hence show that the lines joining the centres of ‘opposite’ squares
have equal length, and cross at right angles.
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X5. Solve the equation

2x4 − 6x3 + 9x2 − 6x+ 2 = 0 .

(It may be useful to consider properties of x−1.)

X6. A number is the sum of two squares if it can be written as a2+b2, where
a and b are integers. Show that, if p and q are each the sum of two
squares, their product, pq, is also the sum of two squares. It may be
useful to find a way to apply complex numbers.

X7. a) Let x = cos y. Using the exponential form of cos, solve the equation
to show that

y =
1

i
loge

(

x+ i
√
1− x2

)

(†)

is one solution.

b) Give a geometric interpretation of why equation (†) works. Refer
to an Argand diagram.

c) Continuing your analysis from X7(a), find a formula for the other
solution of x = cos y in the range −π < y ≤ π, and show al-
gebraically that it satisfies the expected symmetry of the cosine
function. (Take loge to give a principal value, with its imaginary
part between −π and π.)

d) By differentiating equation (†) directly, find the derivative of the
equation y = cos−1 x in its simplest form.

e) Use equation (†) to find a function f such that

2 cos−1 x = cos−1(f(x))

and explain why this particular function is to be expected.

X8. (*) [Try X4 first!] Take a general triangle ABC, and construct equilat-
eral triangles on each side of it. Let the equilateral triangle on side BC
be A′BC. Define B′ and C ′ similarly.

a) Represent points A, B, and C with the complex numbers a, b, and
c. Work out the complex numbers corresponding to the centroids of
the equilateral triangles A′BC, B′AC, and C ′AB. Hence (or oth-
erwise) show that the three centroids themselves form the vertices
of a new equilateral triangle.
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b) Join A′A, B′B, and C ′C. Show (using complex numbers, or other-
wise) that A′A = B′B = C ′C, and that the lines cut each other at
60◦. Show further that they all meet at a point. (It may be useful
to consider the circle through points A′, B, and C; it would be
difficult to find a formula for the point of intersection in complex
numbers.) This point is called the Torricelli point of the triangle
ABC.

c) Draw a line through A perpendicular to A′A, though B perpendic-
ular to B′B, and through C perpendicular to C ′C. Continue these
three lines to form a large triangle. Show that this large triangle
is also equilateral. (For this and the rest of the question it is likely
to be easier not to use complex numbers.)

d) Show that, in any equilateral triangle, the sum of the perpendicu-
lars from a point to the three sides is a constant, independent of
the point chosen.

e) By applying this result to the large triangle, show that, of all points
P in triangle ABC, the point with the least total distance to the
vertices, PA + PB + PC, is the Torricelli Point. (Finding which
point in a triangle minimizes this sum was first set as a problem
by Fermat.)

X9. A parabola has the equation y = x2. It is illuminated from above by rays
of light parallel to the y-axis. These rays strike the parabola and are
reflected. Find the gradients of the tangent and normal to the parabola
at the point with x-co-ordinate x, and hence find the gradient of the
reflected ray. Find the point f at which it crosses the y-axis, and show
that this is independent of x. Comment on the shape of satellite dishes.

X10. Derive a series expansion for

loge

(

1 + x

1− x

)

for small values of x. By choosing a suitable value of x, give a series for
loge 2. Show that the error when truncating the series after the first n
(non-zero) terms is less than

3

4(2n+ 1)9n
.

(This series was used to calculate tables of logarithms in the days before
computers were available to do the job.)
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X11. Let

g(x) =
∞
∑

n=1

cos nx

n

where x is not an integer multiple of 2π. By writing g(x) as the real
part of a complex function, show that

g(x) = − loge

∣

∣

∣
2 sin

(x

2

)
∣

∣

∣
.

It may be useful to consider the series expansion of the natural loga-
rithm.

X12. The curve satisfying x3 + y3 = 2xy is known as the folium of Descartes.

a) By setting up parametric equations in m, where y = mx, sketch
the curve. Find the equation of the asymptote, the positions of any
horizontal or vertical tangents to the curve, and the angle at which
the curve intersects itself.

b) The area A inside the loop can be found by

A =
1

2

∮

x dy − y dx

where the integral is taken anticlockwise around the loop itself.
Indicate on a diagram why this formula for A should work. (If you
know Stokes’ theorem it is more straightforward to show that it
works for arbitrary loops.) Find A. It will be necessary to find the
range of m corresponding to the loop, to convert the integrand into
a function of m, and to express the differentials in terms of dm.

X13. A cycloid is the path traced by a point on a circle, if the circle rolls
without slipping along a flat surface. Take the circle to have radius a,
and to roll along the x-axis such that the cycloid begins from the origin
and makes arches set upon the x-axis.

a) Find parametric equations describing the cycloid. The easiest pa-
rameter to use is the angle through which the circle has turned.

b) Find the length of one arch of the cycloid in terms of the diameter
of the circle.

c) Find the area underneath one arch of the cycloid in terms of the
area of the circle.
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d) An intrinsic equation is a relationship between s, the arc-length
along a curve starting from the origin, and ψ, the angle between
the tangent to the curve and the horizontal. (As such, tanψ = dy

dx
;

you should also be able to show that sinψ = dy
ds

and find a similar
relation for cosψ.) Find the intrinsic equation of the cycloid.

e) (*) A piece of string is tied to the x-axis at (2πa, 0). The cycloid
is made of something solid, and the string is wrapped around it as
far as the top of the first arch at (πa, 2a). A pencil is tied to the
string here. Then the string is slowly unwrapped from the cycloid,
remaining under tension, while the pencil traces a curve. Show that
this curve is itself the same as the original cycloid. (The cycloid is
therefore known as self-involute.)

X14. The curve made by an idealized chain hanging between two points is
known as a catenary. It satisfies the intrinsic equation tanψ = ks, where
the arc-length s is measured from the lowest point of the chain. (If you
study physics, derive this equation, relating k to appropriate physical
parameters.) Intrinsic equations are described in X13(d). Letting the
lowest point of the catenary be (0, k−1), find its Cartesian equation.

X15. a) Factorize x4 + 1 into two quadratic factors containing only real
numbers. You are allowed to use complex numbers as part of the
method if you like!

b) Hence, or otherwise, find
∫ ∞

−∞

dx

x4 + 1
.

(A faster method for this kind of problem, contour integration, is
taught in IB.)

X16. a) (*) Find by substitution

I(a, b) =

∫ ∞

−∞
e−

1

2
(ax2+ b

x2
) dx

where a and b are positive real numbers. The substitution

y =
1

2

(

√
ax−

√
b

x

)

may prove useful if careful attention is paid to the limits of inte-
gration.
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b) Show that the integrand in

J(a, b) =

∫ ∞

−∞

1

x2
e−

1

2
(ax2+ b

x2
) dx

tends to a definite value as x tends to zero, which means that the
integral will be well-defined.

c) (*) Now find the integral I(a, b) by a different method (that is,
without using a substitution of something like y). Use simple sub-
stitutions to write I(a, b) (separately) in terms of I(1, ab), I(ab, 1),

I(b, a), and J(b, a). Then by investigating ∂I(a,b)
∂b

∣

∣

∣

a
form and solve

a differential equation for I(a, b). This should give the same result
as X16(a).

(These integrals appeared in paper 2 in 2008, in a Tripos question rather
harder than usual.)

X17. Let

I =

∫ 2π

0

cos2n x dx and J =

∫ π

2

−π

2

cos2n x dx

where n is a positive integer, possibly large.

a) By means of a diagram show that I = 2J .

b) Find (by any method) the first non-zero term in the Maclaurin
expansion of loge(cosx).

c) By using
cos2n x = e2n loge(cos x)

with the expansion found in the last part, show that J ≈
√

π/n
for large n.

d) By writing cosx in terms of eix and e−ix, show that

I =
2π(2n)!

22n(n!)2
.

e) Stirling’s approximation (which works for large n) is sometimes
given as n! ≈ nne−n, (which was derived in lectures) but a more
accurate form is n! ≈ knαnne−n, where k and α are constants
which we can find. Using the results of the earlier parts together,
show that they are consistent with this latter form of Stirling’s
approximation, and find the values of k and α required to make it
work.
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X18. (*) By considering the double integral

∫ ∞

x=0

∫ λ

v=0

e−ux cos vx dv dx

work out
∫ ∞

x=0

sinλx

x
dx

and hence show that
∫ ∞

−∞

sin x

x
dx = π .

X19. (*) A car sets off due east at 20mph. The driver turns the steering wheel
anti-clockwise at a constant rate, such that the front wheels of the car
rotate three degrees (about vertical axes) per minute. Of course this
cannot continue indefinitely—the car will either tip over, lose traction,
or run out of steering as its turning radius decreases—but, if it could,
the car would spiral closer and closer in to a certain endpoint.

a) Sketch the path of the car. The shape is known as Cornu’s Spiral,
and has applications in optics.

b) Show that the intrinsic equation of the spiral is of the form ψ =
kπs2, and find k, given that the wheelbase of the car (the distance
between the front and back wheels) is 8ft 3in. (See X13(d) for
intrinsic equations.)

c) Give, in integral form, equations for the co-ordinates of the car’s
position in terms of the distance travelled, s.

d) By expressing the car’s position as a complex number, find the
resulting integral. Hence find how far away the endpoint is from
where the car starts, and in which compass direction it lies.

[Make an appropriate small-angle approximation with the angle through
which the front wheels have been turned in order to obtain the intrinsic
equation in the form given. The exact answer would depend on which
point within the car is chosen to define the speed of the body, but the
error introduced by the small-angle approximation isn’t as significant as
the physical limitations of the car in any case.]

X20. A certain river, flowing from north to south, can be crossed using a
row of n stepping-stones. Oscar is standing on one of them and cannot
decide which way to go. With probability 1

2
he steps one stone east (or

onto the left bank if he was already on the stone furthest east). With
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probability 1
2
he steps west in the equivalent way. Whenever he finds

himself on a stepping-stone he repeats this procedure, but whenever he
reaches a bank he stays there.

a) When n = 2, find the probability that Oscar ends up on the left
bank for each of the possible starting stones.

b) Repeat the problem with n = 3.

c) (*) Generalize to any n.

X21. Define Sn =
∑n

r=1
1
r
, the sum of the reciprocals of the first n natural

numbers.

a) Show that limn→∞ Sn is undefined.

b) The floor function, ⌊x⌋, returns the largest integer which is less
than or equal to x. Thus, for example, ⌊7⌋ = 7, ⌊7.2⌋ = 7, and
⌊7.8⌋ = 7. Sketch y = 1

x
and y = 1

⌊x⌋ on the same axes between
x = 1 and x = 7.

c) By considering the graphs sketched above, show that the limit
defining

γ = lim
n→∞

(Sn − loge n)

exists and show further that 1
2
< γ < 1. This mathematical con-

stant γ is known as the Euler-Mascheroni constant. Show that the
error in approximating Sn by γ+loge n is less than 1

2n
, and indicate

whether the approximation is larger or smaller than the true value.

d) In the game of ringboard, players repeatedly throw rubber rings
at a board with hooks attached, trying to make the rings land
on the hooks, and succeeding at a constant mean rate of one ring
per minute. Each hook is labelled with an integer, from 1 to 13
inclusive. The players think that they can control which number
they are most likely to get by aiming, but studies have shown that
all numbers are always equally likely for all players. Lucinda is
practising ringboard. There are two types of game she could play.
In type I, she must first play until she gets a 1, then continue to play
until she gets a 2, and so on until she reaches 13. In type II, she
must also get all thirteen numbers, but they needn’t be sequential:
every time she gets a number that she hasn’t got before, it is ticked
off on a list. When all thirteen numbers have been ticked off she
has finished. Find the expected length of a type I game. Using
γ = 0.58 and loge 13 = 2.56 (both correct to two decimal places)
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work out the expected length a type II game to the nearest whole
number of minutes, showing that the approximations used suffice
to the required degree of accuracy.

X22. A cottage stands at the top of a cliff that runs exactly north-south.
There is a lighthouse a distance b out to sea, due west of the cottage.
The lighthouse randomly emits flashes of light in random directions.
The beam is highly collimated (perhaps using a parabolic reflector as
described in X9) so that each flash is essentially visible only at one point
on the coast. The occupant of the cottage uses a long line of CCDs along
the cliff top to detect the flashes, and records, every time one is detected,
the northward displacement from the cottage, x.

a) Work out the probability density function for x in terms of b. Does
it have a mean, median, mode, standard deviation, and interquar-
tile range? Calculate each of these quantities that exists.

b) Work out (again for a given value of b) the probability density
function that the first two flashes are received at x1 and x2. This
is P (x1, x2|b).

c) (*) Now look at the problem the other way round. Suppose that
we’ve measured the first two flashes at positions x1 and x2. We
want to use this information to work out an estimate for how far
away the lighthouse is. Use Bayes’ theorem. Start with a uniform
prior (i.e. P (b) = const., even though this cannot be normalized),
as we start with no idea where the lighthouse is. Use the fact
that P (x1, x2) is independent of b to get an expression to which
P (b|x1, x2) is proportional, then normalize this to show that the
probability density function for b is

P (b|x1, x2) =
2(x1 + x2)b

2

π(b2 + x21)(b
2 + x22)

.

d) (*) Does this new distribution have a mean, median, mode, stan-
dard deviation and interquartile range? Indicate how those quan-
tities which exist would be calculated. Sketch the distribution, and
work out the mode. How do you think that it is best to summarize
the information that we have about the lighthouse’s position?

e) (*) Suppose that more flashes are measured. What will this do to
the probability distribution for b? Will it make any more quantities
able to be calculated? (You needn’t work out anything explicitly:
the problem rapidly becomes rather complicated.)
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X23. A permutation is known as a derangement if it leaves none of the objects
in their original places. For example, there are 3! = 6 permutations of
three objects, because there are 6 ways of putting three cards, marked
A, B, and C, in three envelopes, also marked A, B, and C. However, only
2 of them are derangements, because only 2 of them keep card A out of
envelope A, card B out of envelope B, and card C out of envelope C. Let
f(n) be the number of derangements of n objects: clearly, f(n) < n!.

a) Find f(n) for n = 1, 2, 3, and 4.

b) By considering where the first object can go in a derangement, and
what that leaves for the rest of the objects, show that

f(n) = (n− 1)[f(n− 1) + f(n− 2)] .

Hence work out f(5) and f(6).

c) (*) Using the last result and mathematical induction show that

f(n) = nf(n− 1) + (−1)n .

d) Using the previous result, show that

f(n) = n!
n
∑

r=0

(−1)r

r!
.

e) (*) Compare the series above with that for e−1, and hence show
that f(n) is always the integer closest to n!/e.

f) Oscar has written a large number n of Christmas cards and ad-
dressed an equal number of envelopes. All of the recipients have
distinct names and addresses. Oscar celebrates the completion of
the writing by drinking too much mulled wine. Consequently he
puts the cards into the envelopes entirely at random, though he
does manage to put precisely one card in each envelope. Give the
approximate probability that no-one gets the right Christmas card,
and the order of the error. Also (*) work out the (exact) mean
and standard deviation of the number of correctly-delivered cards.
Compare this to a well-known standard distribution, and comment.

X24. In the Solar system, a small object of mass m, far enough away from the
planets to be unaffected by their gravitational field, is released. Initially
it is at rest a distance x0 from the Sun. If M is the mass of the Sun,
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G the gravitational constant, x the distance of the object from the Sun,
and t the time since release, Newton’s laws give

d2x

dt2
=

−GM
x2

.

Solve this differential equation to find how long the object takes to reach
a certain distance x from the Sun. It may be useful to re-cast the
equation in terms of the velocity, v, and x. Hence show that the time
taken to reach the centre of the Sun is

π

√

x30
8GM

.

X25. (*) A peacock perches on a pillar at of height h. A snake emerges from
a hole at the bottom of the pillar and slithers at a constant rate in a
straight line along the ground away from the pillar. The ground is level.
At the moment when the snake emerges, the peacock takes off. The
peacock constantly alters its direction so that it is always flying towards
the snake. It moves with a constant speed which is λ times that of
the snake. Find the the distance from the pillar at which the peacock
catches the snake. If y is height above the ground and x is horizontal
displacement from the pillar, find a Cartesian equation for the path of
the peacock, in the form x = f(y).

X26. Differential equations with constant coefficients are susceptible to similar
methods as the order of the the differential equation increases. Find the
general solution in real numbers of

d4y

dx4
= w +Ky

treating separately the cases K > 0 (setting K = q4 with real q), K = 0,
and K < 0 (setting K = −4k4 with real k). Fourth-order differential
equations can be used to describe the deflexion of beams; a choice of
K < 0 would allow us to model the deflexion of a beam attached to lots
of springs.

X27. Find the general solution of

d2y

dx2
− 2

dy

dx
+ 10y = ex + sin 3x+ ex cos5 x .
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X28. Find the stationary points of the function

z = (3xy2 − x3)e−
3

2
(x2+y2)

and the values of z at those points. Classify the stationary points and
provide a contour sketch of the function for x and y between -2 and 2
or so.

X29. Recall the cyclic relation between the partial derivatives of three vari-
ables, which applies when they are related together by one constraint so
that there are two degrees of freedom. Try to view the cyclic relation
geometrically if possible.

a) When there are four variables related by only one constraint, we
can form partial derivatives like ∂w

∂x

∣

∣

y,z
. Find the value of

∂w

∂x

∣

∣

∣

∣

y,z

∂x

∂y

∣

∣

∣

∣

z,w

∂y

∂z

∣

∣

∣

∣

w,x

∂z

∂w

∣

∣

∣

∣

x,y

.

b) Generalize the result above to n variables and one constraint.

c) (*) When there are four variables related by two constraints the
cyclic form doesn’t have a fixed numerical value. Find, nonetheless,
a formula for

∂w

∂x

∣

∣

∣

∣

y

∂x

∂y

∣

∣

∣

∣

z

∂y

∂z

∣

∣

∣

∣

w

∂z

∂w

∣

∣

∣

∣

x

in terms of only ∂w
∂x

∣

∣

y
and ∂w

∂x

∣

∣

z
.

X30. In this question a, b, and c are real numbers greater than zero.

a) Nesbitt’s inequality states that

a

b+ c
+

b

c+ a
+

c

a+ b
≥ 3

2
.

Show using Lagrange multipliers that Nesbitt’s inequality is satis-
fied whenever a + b + c = 1, and hence show that it is satisfied in
general.

b) (*) Using a similar approach, but perhaps a different constraint,
show that

50(abc)
2

3

ab+ bc + ca
+

4(a+ b+ c)

(abc)
1

3

≥ 27 .
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X31. a) The scalar fields ρ and p and the vector field F are related by
ρF = ∇p. Show that F is perpendicular to its own curl, except
perhaps in regions where ρ = 0.

b) The vector field F is solenoidal, i.e. ∇ · F = 0. The operator ∇2

can be defined when acting on vectors by applying the usual

∇2 ≡ div grad ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

operation to each component to make a new vector. Show that

curl curl curl curlF = ∇4F .

c) From the divergence theorem derive Green’s theorem (“Green’s sec-
ond identity”),

∮

∂V

(u∇v − v∇u) · dS =

∫

V

u∇2v − v∇2u dτ

where ∂V denotes the closed surface bounding a region of space V ,
and dτ is an element of volume.

X32. The velocity v of a fluid is a vector field with the following properties,
where r is a cylindrical co-ordinate.

• The components of v in terms of the cylindrical polar basis vectors
er, eθ, and ez depend only on r.

• v is everywhere perpendicular to ez.

• The components of v are continuous in all directions everywhere.

• ∇ · v = 0 everywhere.

• ∇× v = 2ω for r ≤ R but ∇× v = 0 for r > R.

By using appropriate vector calculus theorems which exploit the sym-
metries, find v in terms of |ω| and R. This flow pattern is known as
a Rankine vortex ; it is sometimes a reasonable approximation to the
vortex motion of a fluid with a fairly low viscosity.

X33. Consider the Fourier series

f(x) =
1

2
+

1

2
cos(Nx) +

N−1
∑

n=1

cos(nx) .
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a) First sketch f(x) for N = 2 between 0 and 4π. (It is not necessary
in this question to find all of the stationary points.)

b) Now sketch f(x) for N = 3 over the same range. If you have a
computer to hand, look at similar plots with larger N .

c) Now try to understand the behaviour of the series algebraically.
Show that

f(x) =
1

2
cot
(x

2

)

sin(Nx) .

Explain what happens to f(x) for large N (i) when x is not close
to a multiple of 2π and (ii) when x is close to a multiple of 2π,
indicating the behaviour on a rough sketch.

d) Now try to understand the behaviour of the series geometrically.
Show the numbers 1

2
, eix, e2ix &c. on an Argand diagram for a small

value of x and a random larger value of x. Arrange the vectors
nose-to-tail to form the complex sum, and relate the real part of
this complex number to the behaviour observed in the previous
part. (For physicists, relate also to multi-slit diffraction, and for
materials scientists, relate to Bragg reflexion.)

e) What must the integral of f(x) be over a complete period? (Only
one term in the series contributes.)

f) (*) In the limit as N → ∞, what do you expect the integral of f(x)
to be over any range that does not include a multiple of 2π?

g) (*) Discuss the form of the function itself in the limit as N → ∞,
and explain how the coefficients of the Fourier series would have
been obtained from this function. We shall have to generalize the
notion of a function here, by considering its effect on integrals,
rather than its values, which are all undefined in the limit.

X34. This question is about Vandermonde determinants, which have applica-
tions in polynomial interpolation.

a) Show that the determinant

∣

∣

∣

∣

∣

∣

1 1 1
x y z
x2 y2 z2

∣

∣

∣

∣

∣

∣

is equal to (y − x)(z − x)(z − y).
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b) Find
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
w x y z
w2 x2 y2 z2

w3 x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

in a similar form.

c) (*) Generalize this result to n variables, raised to powers 0, 1 . . . n−
1 in an n by n determinant.

X35. The Fibonacci numbers Fn are defined such that F1 = 1, F2 = 1, and
Fn = Fn−2 + Fn−1 for n > 2. Define the vector vn = (Fn, Fn−1). Find a
matrix M such that vn+1 = Mvn for n > 1. By writing this matrix in
diagonalized form, find a simpler form for powers of M, hence find an
explicit (non-recursive) formula for Fn. Use this formula to evaluate

lim
n→∞

Fn+1

Fn

which is known as the golden ratio.

X36. The real matrices X, Y, and Z obey

X2 = Y2 = Z2 = XYZ = −I

where I is the n by n identity matrix. This question is about the repre-
sentation of a four-dimensional analogue of complex numbers, known as
quaternions, by matrices, but you do not need to know anything about
quaternions to do the question.

a) Show that X cannot be a symmetric matrix.

b) Show that XY +YX = 0.

c) For the rest of the question, add the further requirement that X,
Y, and Z are orthogonal matrices. Show that this implies that
they are all antisymmetric.

d) We consider matrices of the form Q, where

Q = aI+ bX+ cY + dZ

with a, b, c, and d any real numbers. The matrices are fixed con-
stants. Thus a matrix is in the form Q if it is a linear combination
of the four matrices above. Show that the sum, difference, and
product of a pair of matrices of form Q is another matrix of the
form Q.
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e) (*) Find the determinant of Q in terms of a, b, c, and d (and also
n). Hence show that every non-zero matrix of the form Q has an
inverse which is also a matrix of the form Q, and find a formula
for this inverse.

f) Find a possible set of matrices X, Y, and Z that satisfy the prop-
erties. The simplest representation has n = 4; the elements are all
1, 0, and −1.

g) (*) Continuing the analysis of the determinants above, show, by
analogy with X6, that if two integers can each be written as the
sum of four squares, then their product can also be written as the
sum of four squares. (In fact all integers can be written as the sum
of four squares; this is one step in a proof.)

X37. (*) The scalar field ψ = ψ(x, y) obeys

∇2ψ + 10
∂ψ

∂x
+ 34ψ = 0

subject to ψ(0, y) = 0 for all y, ψ(x, 0) = ψ(x, π) = 0 for all x, and
ψ(x, y) = ψ(x, π − y) for all x and y. In addition,

lim
x→∞

exψ
(

x,
π

2

)

= 1 ,

ψ

(

π√
2
,
2π

5

)

=
π√
2
sin
(π

5

)

, and

ψ

(

π√
32
,
π

3

)

=

√
3

2
e−9π/

√
32 .

Find ψ(x, y).

X38. When a rope under tension is wrapped around a body without friction,
it follows a geodesic curve on the surface. Broadly, this means that
between any two points on the path of the rope, the path that it does
take between those two points is the shortest that it could. Now the tip
of a certain mountain is a perfect cone covered in perfectly slippery ice.
Lucinda tries to climb the mountain by throwing a fixed-loop rope lasso
around the summit and hauling herself up on it. What is the maximum
vertex angle of the cone such that this approach could work? Note that
the geodesic property holds for every part of the loop that does not
include the attachment to Lucinda. This problem can be tackled with
the calculus of variations, taught in IB, but doesn’t really need calculus
at all!
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X39. Reflexions of objects in mirrors appear to have their left and right halves
swapped round. Why, given the isotropy of space, is this the case when
the top and bottom halves aren’t swapped?

18


